3k^2+6k-1=4

Simple and best practice solution for 3k^2+6k-1=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3k^2+6k-1=4 equation:


Simplifying
3k2 + 6k + -1 = 4

Reorder the terms:
-1 + 6k + 3k2 = 4

Solving
-1 + 6k + 3k2 = 4

Solving for variable 'k'.

Reorder the terms:
-1 + -4 + 6k + 3k2 = 4 + -4

Combine like terms: -1 + -4 = -5
-5 + 6k + 3k2 = 4 + -4

Combine like terms: 4 + -4 = 0
-5 + 6k + 3k2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-1.666666667 + 2k + k2 = 0

Move the constant term to the right:

Add '1.666666667' to each side of the equation.
-1.666666667 + 2k + 1.666666667 + k2 = 0 + 1.666666667

Reorder the terms:
-1.666666667 + 1.666666667 + 2k + k2 = 0 + 1.666666667

Combine like terms: -1.666666667 + 1.666666667 = 0.000000000
0.000000000 + 2k + k2 = 0 + 1.666666667
2k + k2 = 0 + 1.666666667

Combine like terms: 0 + 1.666666667 = 1.666666667
2k + k2 = 1.666666667

The k term is 2k.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2k + 1 + k2 = 1.666666667 + 1

Reorder the terms:
1 + 2k + k2 = 1.666666667 + 1

Combine like terms: 1.666666667 + 1 = 2.666666667
1 + 2k + k2 = 2.666666667

Factor a perfect square on the left side:
(k + 1)(k + 1) = 2.666666667

Calculate the square root of the right side: 1.632993162

Break this problem into two subproblems by setting 
(k + 1) equal to 1.632993162 and -1.632993162.

Subproblem 1

k + 1 = 1.632993162 Simplifying k + 1 = 1.632993162 Reorder the terms: 1 + k = 1.632993162 Solving 1 + k = 1.632993162 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + k = 1.632993162 + -1 Combine like terms: 1 + -1 = 0 0 + k = 1.632993162 + -1 k = 1.632993162 + -1 Combine like terms: 1.632993162 + -1 = 0.632993162 k = 0.632993162 Simplifying k = 0.632993162

Subproblem 2

k + 1 = -1.632993162 Simplifying k + 1 = -1.632993162 Reorder the terms: 1 + k = -1.632993162 Solving 1 + k = -1.632993162 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + k = -1.632993162 + -1 Combine like terms: 1 + -1 = 0 0 + k = -1.632993162 + -1 k = -1.632993162 + -1 Combine like terms: -1.632993162 + -1 = -2.632993162 k = -2.632993162 Simplifying k = -2.632993162

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.632993162, -2.632993162}

See similar equations:

| x+5x=39,612 | | 6x-8-5x=2 | | y=(8-9k)x | | 13-2x-2x=1-x | | Csquared-8c=9 | | k-2+k-1+k=0 | | -0.3+r=4.1 | | -2c=14 | | 6m-14=6-5m | | z^2+2=12+3z | | -5a=-35 | | -5(2-X)=5X | | y=(6-2k)x | | x-4x=170 | | 24=4y | | 6x^2y+24xy-66y= | | -8+k=-7 | | -7(7x+3)=-49x-21 | | 0=z+5+4z | | 175x-125x+42975=46125-175x | | 5x^3-25x^2-180x= | | -3(5y-10)+2(2y+5)= | | 4+9(t+2)=3(t-2) | | X+0.05x=400000 | | 2(4x+5)=13x+18-5x+2 | | 0.65t+0.35(100-t)=0.37(100) | | 30-5Y-2= | | -5=x-16 | | -16=my+71 | | X^2-20x-96= | | x^3+4x^2-7x=0 | | 3x^2-39x+120= |

Equations solver categories